Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
2.
J Cancer Res Ther ; 17(2): 551-555, 2021.
Article in English | MEDLINE | ID: covidwho-1268377

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID 19) is a zoonotic viral infection that originated in Wuhan, China, in December 2019. It was declared a pandemic by the World Health Organization shortly thereafter. This pandemic is going to have a lasting impact on the functioning of pathology laboratories due to the frequent handling of potentially infectious samples by the laboratory personnel. To deal with this unprecedented situation, various national and international guidelines have been put forward outlining the precautions to be taken during sample processing from a potentially infectious patient. PURPOSE: Most of these guidelines are centered around laboratories that are a part of designated COVID 19 hospitals. However, proper protocols need to be in place in all laboratories, irrespective of whether they are a part of COVID 19 hospital or not as this would greatly reduce the risk of exposure of laboratory/hospital personnel. As part of a laboratory associated with a rural cancer hospital which is not a dedicated COVID 19 hospital, we aim to present our institute's experience in handling pathology specimens during the COVID 19 era. CONCLUSION: We hope this will address the concerns of small to medium sized laboratories and help them build an effective strategy required for protecting the laboratory personnel from risk of exposure and also ensure smooth and optimum functioning of the laboratory services.


Subject(s)
COVID-19/diagnosis , Clinical Laboratory Services/organization & administration , Infection Control/organization & administration , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Tertiary Care Centers/organization & administration , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Cancer Care Facilities/organization & administration , Cancer Care Facilities/standards , Clinical Laboratory Services/standards , Decontamination/methods , Decontamination/standards , Developing Countries , Disinfection/methods , Disinfection/organization & administration , Disinfection/standards , Hospitals, Rural/organization & administration , Hospitals, Rural/standards , Humans , India/epidemiology , Infection Control/standards , Medical Laboratory Personnel/organization & administration , Medical Laboratory Personnel/standards , Pandemics/prevention & control , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Specimen Handling/standards , Tertiary Care Centers/standards , Workforce/organization & administration , Workforce/standards
3.
J Hosp Infect ; 106(3): 536-553, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1023641

ABSTRACT

BACKGROUND: In pandemics such as COVID-19, shortages of personal protective equipment are common. One solution may be to decontaminate equipment such as facemasks for reuse. AIM: To collect and synthesize existing information on decontamination of N95 filtering facepiece respirators (FFRs) using microwave and heat-based treatments, with special attention to impacts on mask function (aerosol penetration, airflow resistance), fit, and physical traits. METHODS: A systematic review (PROSPERO CRD42020177036) of literature available from Medline, Embase, Global Health, and other sources was conducted. Records were screened independently by two reviewers, and data was extracted from studies that reported on effects of microwave- or heat-based decontamination on N95 FFR performance, fit, physical traits, and/or reductions in microbial load. FINDINGS: Thirteen studies were included that used dry/moist microwave irradiation, heat, or autoclaving. All treatment types reduced pathogen load by a log10 reduction factor of at least three when applied for sufficient duration (>30 s microwave, >60 min dry heat), with most studies assessing viral pathogens. Mask function (aerosol penetration <5% and airflow resistance <25 mmH2O) was preserved after all treatments except autoclaving. Fit was maintained for most N95 models, though all treatment types caused observable physical damage to at least one model. CONCLUSIONS: Microwave irradiation and heat may be safe and effective viral decontamination options for N95 FFR reuse during critical shortages. The evidence does not support autoclaving or high-heat (>90°C) approaches. Physical degradation may be an issue for certain mask models, and more real-world evidence on fit is needed.


Subject(s)
Coronavirus Infections/prevention & control , Decontamination/standards , Equipment Reuse/standards , Guidelines as Topic , Hot Temperature , Respiratory Protective Devices/virology , Ultraviolet Rays , Humans
5.
J Hosp Infect ; 107: 50-56, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-866875

ABSTRACT

BACKGROUND: Coronavirus disease 2019 has stretched the ability of many institutions to supply needed personal protective equipment, especially N95 respirators. N95 decontamination and re-use programmes provide one potential solution to this problem. Unfortunately, a comprehensive evaluation of the effects of decontamination on the fit of various N95 models using a quantitative fit test (QNFT) approach is lacking. AIMS: To investigate the effects of up to eight rounds of vaporized hydrogen peroxide (VHP) decontamination on the fit of N95 respirators currently in use in a hospital setting, and to examine if N95 respirators worn by one user can adapt to the face shape of a second user with no compromise to fit following VHP decontamination. METHODS: The PortaCount Pro+ Respirator Fit Tester Model 8038 was used to quantitatively define functional integrity, measured by fit, of N95 respirators following decontamination with VHP. FINDINGS: There was an observable downward trend in the functional integrity of Halyard Fluidshield 46727 N95 respirators throughout eight cycles of decontamination with VHP. Functional integrity of 3M 1870 N95 respirators was reduced significantly after the respirator was worn, decontaminated with VHP, and then quantitatively fit tested on a second user. Furthermore, inconsistencies between qualitative fit test and QNFT results were uncovered that may have strong implications on the fit testing method used by institutions. CONCLUSIONS: The data revealed variability in the functional integrity of different N95 models after VHP decontamination, and exposed potential limitations of N95 decontamination and re-use programmes.


Subject(s)
COVID-19/prevention & control , Decontamination/methods , Decontamination/standards , Equipment Reuse , Hydrogen Peroxide/pharmacology , N95 Respirators/standards , Humans , Volatilization
6.
J Hosp Infect ; 106(3): 577-584, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-809252

ABSTRACT

BACKGROUND: In the context of the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, the supply of personal protective equipment remains under severe strain. To address this issue, re-use of surgical face masks and filtering facepiece respirators has been recommended; prior decontamination is paramount to their re-use. AIM: We aim to provide information on the effects of three decontamination procedures on porcine respiratory coronavirus (PRCV)-contaminated masks and respirators, presenting a stable model for infectious coronavirus decontamination of these typically single-use-only products. METHODS: Surgical masks and filtering facepiece respirator coupons and straps were inoculated with infectious PRCV and submitted to three decontamination treatments, ultraviolet (UV) irradiation, vaporized H2O2, and dry heat treatment. Viruses were recovered from sample materials and viral titres were measured in swine testicle cells. FINDINGS: UV irradiation, vaporized H2O2 and dry heat reduced infectious PRCV by more than three orders of magnitude on mask and respirator coupons and rendered it undetectable in all decontamination assays. CONCLUSION: This is the first description of stable disinfection of face masks and filtering facepiece respirators contaminated with an infectious SARS-CoV-2 surrogate using UV irradiation, vaporized H2O2 and dry heat treatment. The three methods permit demonstration of a loss of infectivity by more than three orders of magnitude of an infectious coronavirus in line with the United States Food and Drug Administration policy regarding face masks and respirators. It presents advantages of uncomplicated manipulation and utilization in a BSL2 facility, therefore being easily adaptable to other respirator and mask types.


Subject(s)
Coronavirus Infections/prevention & control , Decontamination/standards , Equipment Reuse/standards , Hot Temperature , Hydrogen Peroxide/standards , Respiratory Protective Devices/virology , Surgical Equipment/standards , Surgical Equipment/virology , Ultraviolet Rays , Guidelines as Topic , Humans
7.
BMJ Open Respir Res ; 7(1)2020 09.
Article in English | MEDLINE | ID: covidwho-760260

ABSTRACT

Face masks and respirators are the most widely used intervention measures for respiratory protection. In the wake of COVID-19, in response to shortages and lack of availability of surgical masks and respirators, the use of cloth masks has become a research focus. Various fabrics have been promoted with little evidence-based foundation and without guidelines on design principles for optimal performance. In these circumstances, it is essential to understand the properties, key performance factors, filter mechanisms and evidence on cloth masks materials. The general community might also need to decontaminate and reuse disposable, single-use devices as a last resort. We present an overview of the filter materials, filter mechanisms and effectiveness, key performance factors, and hydrophobicity of the common disposable masks, as well as cloth masks. We also reviewed decontamination methods for disposable respiratory devices. As an alternative to surgical masks and respirators, we recommend a cloth mask made of at least three layers (300-350 threads per inch) and adding a nylon stocking layer over the mask for a better fit. Water-resistant fabrics (polyesters/nylon), blends of fabrics and water-absorbing fabrics (cotton) should be in the outside layer, middle layer/layers and inside layer, respectively. The information outlined here will help people to navigate their choices if facing shortages of appropriate respiratory protection during the COVID-19 pandemic.


Subject(s)
Communicable Disease Control , Coronavirus Infections , Decontamination , Masks , Pandemics , Pneumonia, Viral , Betacoronavirus/isolation & purification , COVID-19 , Communicable Disease Control/instrumentation , Communicable Disease Control/methods , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Decontamination/methods , Decontamination/standards , Equipment Design , Humans , Masks/standards , Masks/supply & distribution , Medical Waste Disposal/methods , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , SARS-CoV-2
8.
J Hosp Infect ; 106(3): 570-576, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-723894

ABSTRACT

BACKGROUND: Identifying the extent of environmental contamination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for infection control and prevention. The extent of environmental contamination has not been fully investigated in the context of severe coronavirus disease (COVID-19) patients. AIM: To investigate environmental SARS-CoV-2 contamination in the isolation rooms of severe COVID-19 patients requiring mechanical ventilation or high-flow oxygen therapy. METHODS: Environmental swab samples and air samples were collected from the isolation rooms of three COVID-19 patients with severe pneumonia. Patients 1 and 2 received mechanical ventilation with a closed suction system, while patient 3 received high-flow oxygen therapy and non-invasive ventilation. Real-time reverse transcription-polymerase chain reaction (rRT-PCR) was used to detect SARS-CoV-2; viral cultures were performed for samples not negative on rRT-PCR. FINDINGS: Of the 48 swab samples collected in the rooms of patients 1 and 2, only samples from the outside surfaces of the endotracheal tubes tested positive for SARS-CoV-2 by rRT-PCR. However, in patient 3's room, 13 of the 28 environmental samples (fomites, fixed structures, and ventilation exit on the ceiling) showed positive results. Air samples were negative for SARS-CoV-2. Viable viruses were identified on the surface of the endotracheal tube of patient 1 and seven sites in patient 3's room. CONCLUSION: Environmental contamination of SARS-CoV-2 may be a route of viral transmission. However, it might be minimized when patients receive mechanical ventilation with a closed suction system. These findings can provide evidence for guidelines for the safe use of personal protective equipment.


Subject(s)
Coronavirus Infections/therapy , Decontamination/standards , Environmental Pollution/analysis , Hyperbaric Oxygenation/standards , Patients' Rooms/standards , Pneumonia, Viral/therapy , Pneumonia/therapy , Practice Guidelines as Topic , Respiration, Artificial/standards , Air Microbiology , COVID-19 , Humans , Pandemics
9.
Am J Infect Control ; 48(12): 1457-1461, 2020 12.
Article in English | MEDLINE | ID: covidwho-713731

ABSTRACT

BACKGROUND: To address the shortage of N95 respirators in the wake of the COVID-19 pandemic, some organizations have recommended the decontamination of respirators using vaporized hydrogen peroxide (VHP) sterilizer for up to 10 times. However, these recommendations are based on studies that did not take into account the extended use of respirators, which can degrade respirator fit. METHODS: We investigated the impact of extended use and decontamination with VHP on N95 Respirator Fit. We performed a prospective cohort study to determine the number of times respirators can be decontaminated before respirator fit test failure. The primary outcome was the overall number of cycles required for half of the respirators to fail (either mechanical failure or fit test failure). RESULTS: Thirty-six participants completed 360 hours of respirator usage across 90 cycles. The median number of cycles completed by participants before respirator failure was 2. The overall number of cycles required for half of respirators to fail was 1, 3, 5, and 4 for the 3M 1860(S), 3M 1870+, Moldex 151X and ProGear 88020 respirators, respectively. CONCLUSIONS: The combination of prolonged usage and VHP decontamination was associated with early failure. Decontamination and prolonged usage of respirators must be done cautiously.


Subject(s)
COVID-19/prevention & control , Decontamination/methods , Equipment Reuse , N95 Respirators/virology , Respiratory Protective Devices/virology , Adult , Decontamination/standards , Female , Humans , Hydrogen Peroxide , Male , Prospective Studies , SARS-CoV-2 , Volatilization
10.
J Hosp Infect ; 106(3): 504-521, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-709227

ABSTRACT

BACKGROUND: Decontaminating and reusing filtering facepiece respirators (FFRs) for healthcare workers is a potential solution to address inadequate FFR supply during a global pandemic. AIM: The objective of this review was to synthesize existing data on the effectiveness and safety of using chemical disinfectants to decontaminate N95 FFRs. METHODS: A systematic review was conducted on disinfectants to decontaminate N95 FFRs using Embase, Medline, Global Health, Google Scholar, WHO feed, and MedRxiv. Two reviewers independently determined study eligibility and extracted predefined data fields. Original research reporting on N95 FFR function, decontamination, safety, or FFR fit following decontamination with a disinfectant was included. FINDINGS AND CONCLUSION: A single cycle of vaporized hydrogen peroxide (H2O2) successfully removes viral pathogens without affecting airflow resistance or fit, and maintains an initial filter penetration of <5%, with little change in FFR appearance. Residual hydrogen peroxide levels following decontamination were within safe limits. More than one decontamination cycle of vaporized H2O2 may be possible but further information is required on how multiple cycles would affect FFR fit in a real-world setting before the upper limit can be established. Although immersion in liquid H2O2 does not appear to adversely affect FFR function, there is no available data on its ability to remove infectious pathogens from FFRs or its impact on FFR fit. Sodium hypochlorite, ethanol, isopropyl alcohol, and ethylene oxide are not recommended due to safety concerns or negative effects on FFR function.


Subject(s)
Coronavirus Infections/prevention & control , Decontamination/standards , Disinfectants/administration & dosage , Equipment Reuse/standards , Hydrogen Peroxide/administration & dosage , Respiratory Protective Devices/virology , Sodium Hypochlorite/administration & dosage , Guidelines as Topic , Humans , Ultraviolet Rays
12.
J Hosp Infect ; 106(2): 283-294, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-636625

ABSTRACT

BACKGROUND: The high demand for personal protective equipment during the novel coronavirus outbreak has prompted the need to develop strategies to conserve supply. Little is known regarding decontamination interventions to allow for surgical mask reuse. AIM: To identify and synthesize data from original research evaluating interventions to decontaminate surgical masks for the purpose of reuse. METHODS: MEDLINE, Embase, CENTRAL, Global Health, the WHO COVID-19 database, Google Scholar, DisasterLit, preprint servers, and prominent journals from inception to April 8th, 2020, were searched for prospective original research on decontamination interventions for surgical masks. Citation screening was conducted independently in duplicate. Study characteristics, interventions, and outcomes were extracted from included studies by two independent reviewers. Outcomes of interest included impact of decontamination interventions on surgical mask performance and germicidal effects. FINDINGS: Seven studies met eligibility criteria: one evaluated the effects of heat and chemical interventions applied after mask use on mask performance, and six evaluated interventions applied prior to mask use to enhance antimicrobial properties and/or mask performance. Mask performance and germicidal effects were evaluated with heterogeneous test conditions. Safety outcomes were infrequently evaluated. Mask performance was best preserved with dry heat decontamination. Good germicidal effects were observed in salt-, N-halamine-, and nanoparticle-coated masks. CONCLUSION: There is limited evidence on the safety or efficacy of surgical mask decontamination. Given the heterogeneous methods used in studies to date, we are unable to draw conclusions on the most efficacious and safe intervention for decontaminating surgical masks.


Subject(s)
Coronavirus Infections/prevention & control , Decontamination/standards , Equipment Reuse/standards , Guidelines as Topic , Masks/standards , Pandemics/prevention & control , Personal Protective Equipment/standards , Pneumonia, Viral/prevention & control , Respiratory Protective Devices/standards , Betacoronavirus , COVID-19 , Decontamination/methods , Equipment Reuse/statistics & numerical data , Humans , Masks/statistics & numerical data , Personal Protective Equipment/statistics & numerical data , Prospective Studies , Respiratory Protective Devices/statistics & numerical data , SARS-CoV-2
13.
mBio ; 11(3)2020 06 25.
Article in English | MEDLINE | ID: covidwho-616491

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a severe, international shortage of N95 respirators, which are essential to protect health care providers from infection. Given the contemporary limitations of the supply chain, it is imperative to identify effective means of decontaminating, reusing, and thereby conserving N95 respirator stockpiles. To be effective, decontamination must result in sterilization of the N95 respirator without impairment of respirator filtration or user fit. Although numerous methods of N95 decontamination exist, none are universally accessible. In this work, we describe a microwave-generated steam decontamination protocol for N95 respirators for use in health care systems of all sizes, geographies, and means. Using widely available glass containers, mesh from commercial produce bags, a rubber band, and a 1,100-W commercially available microwave, we constructed an effective, standardized, and reproducible means of decontaminating N95 respirators. Employing this methodology against MS2 phage, a highly conservative surrogate for SARS-CoV-2 contamination, we report an average 6-log10 plaque-forming unit (PFU) (99.9999%) and a minimum 5-log10 PFU (99.999%) reduction after a single 3-min microwave treatment. Notably, quantified respirator fit and function were preserved, even after 20 sequential cycles of microwave steam decontamination. This method provides a valuable means of effective decontamination and reuse of N95 respirators by frontline providers facing urgent need.IMPORTANCE Due to the rapid spread of coronavirus disease 2019 (COVID-19), there is an increasing shortage of protective gear necessary to keep health care providers safe from infection. As of 9 April 2020, the CDC reported 9,282 cumulative cases of COVID-19 among U.S. health care workers (CDC COVID-19 Response Team, MMWR Morb Mortal Wkly Rep 69:477-481, 2020, https://doi.org/10.15585/mmwr.mm6915e6). N95 respirators are recommended by the CDC as the ideal method of protection from COVID-19. Although N95 respirators are traditionally single use, the shortages have necessitated the need for reuse. Effective methods of N95 decontamination that do not affect the fit or filtration ability of N95 respirators are essential. Numerous methods of N95 decontamination exist; however, none are universally accessible. In this study, we describe an effective, standardized, and reproducible means of decontaminating N95 respirators using widely available materials. The N95 decontamination method described in this work will provide a valuable resource for hospitals, health care centers, and outpatient practices that are experiencing increasing shortages of N95 respirators due to the COVID-19 pandemic.


Subject(s)
Betacoronavirus/radiation effects , Coronavirus Infections/prevention & control , Decontamination/instrumentation , Decontamination/methods , Masks , Steam , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/transmission , Coronavirus Infections/virology , Decontamination/standards , Disease Transmission, Infectious/prevention & control , Disinfection/instrumentation , Disinfection/methods , Equipment Reuse/standards , Filtration , Humans , Microwaves , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Reproducibility of Results , SARS-CoV-2 , Sterilization , United States
SELECTION OF CITATIONS
SEARCH DETAIL